

PROGRAMME OF THE EUROPEAN UNION

European

18th EFAS annual meeting

Christian Krullikowski¹, Tobias Stachl² ¹German Aerospace Center (DLR) ²Earth Observation Data Centre (EODC)

COPERNICUS EMERGENCY MANAGEMENT SERVICE

Contents

- Available products
- Visualising GFM products via GloFAS / EFAS
- Quick Start Guides
 - GFM portal
 - GFM REST API
 - WMS in QGIS
- Flood algorithm details (if time)

Available products

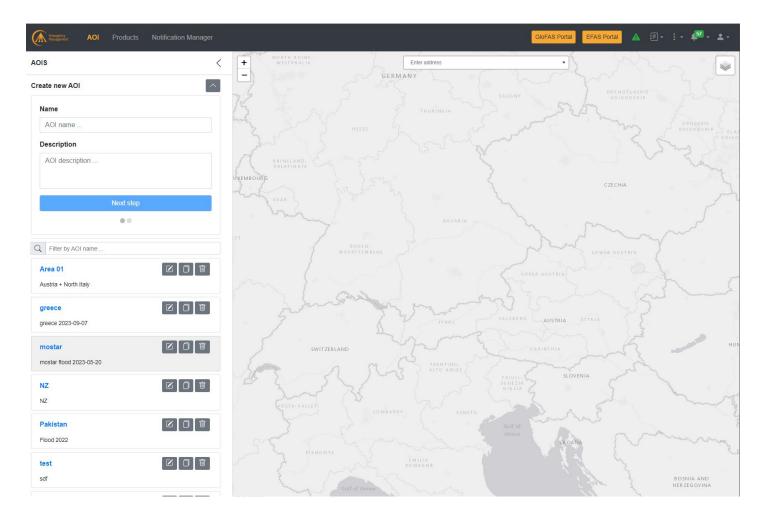
- S-1 Observed Flood Extent (ENSEMBLE)
- S-1 Reference Water Mask (permanent & seasonal water)
- S-1 Observed Water Extent (ENSEMBLE + reference water mask)
- Exclusion Mask
- Likelihood Values
- Advisory Flags
- Affected Population
- Affected Landcover
- S-1 Metadata
- S-1 Footprint
- S-1 Schedule

Visualizing via GloFAS / EFAS

GloFAS: tinyurl.com/efas23glofas EFAS: tinyurl.com/efas23efas

Quick Start Guide

Welcome to the quick start guide of the Global Flood Monitoring service


₽	What is the Global Flood Monitoring (GFM) Product?	
Ŧ	How to use GFM data in GLOFAS	
₽	How to use GFM data in EFAS	
₽	How to use GFM's REST-APIs	
F	How to use GFM's WMS-T	
₽	How to get GFM data through the webportal	

tinyurl.com/efas23qsg

GFM Portal

portal.gfm.eodc.eu

GFM REST API

GFM JRC API^{22.01}

[Base URL: /v2] /v2/swagger.json

GFM JRC Service API based on a Microservice architecture auth Endpoint specification related to authentication operations \sim \sim USERS Endpoint specification related to users operations download Endpoint specification related to the GFM product download \sim legends Endpoint specification related to product legends \sim notifications Endpoint specification related to the notification service \sim \sim products Endpoint specification related to the GFM products \sim reporting Endpoint specification related to the GFM report generation aoi Endpoint specification related to the area of interest \sim \sim support Endpoint specification related to support requests utils Endpoint specification for general operations \sim Models \sim

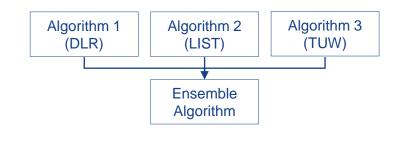
PROGRAMME OF THE EUROPEAN UNION

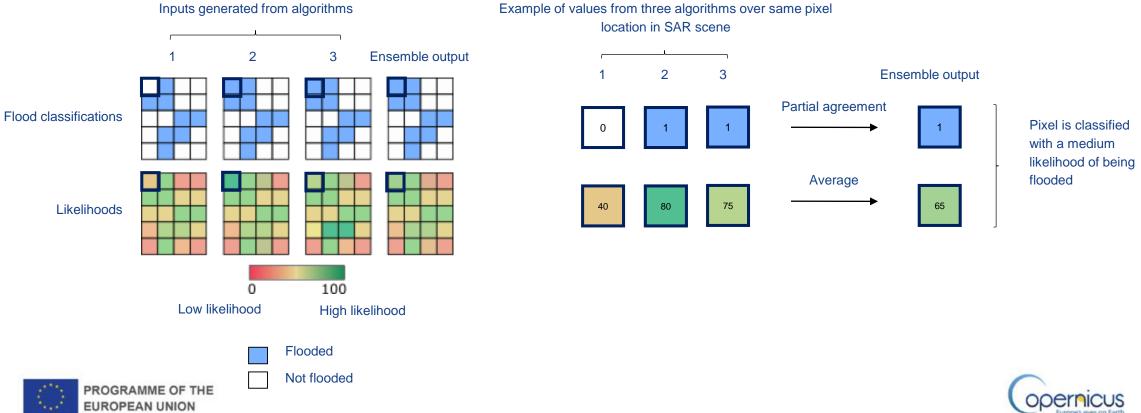
api.gfm.eodc.eu/v2/

GFM REST API - Summary

- Register via EFAS or GloFAS
- Retrieve access token via:
 - EFAS / GIoFAS UI
 - username/password via /auth/login
- Find aoi_id of desired AOI via /aoi/user/{user_id}
- Find product_id of desired product via /aoi/{aoi_id}/products
- Download products via /download endpoints

PROGRAMME OF THE EUROPEAN UNION




European Commission

> Flood algorithm details

Ensemble flood mapping algorithm

- Combining flood & likelihood values of all three flood algorithms
- · Majority vote decides if a pixel is marked as flood or non-flood
- Final likelihood layer is the arithmetic mean of all likelihoods

Flood algorithms

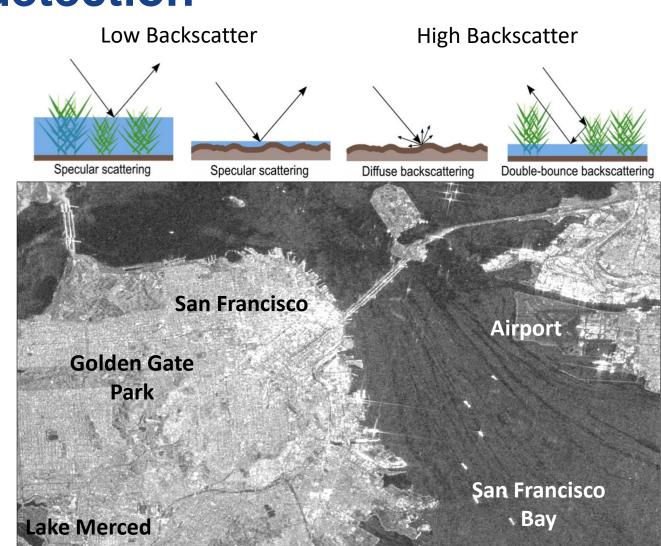
Algorithm 1 (DLR)

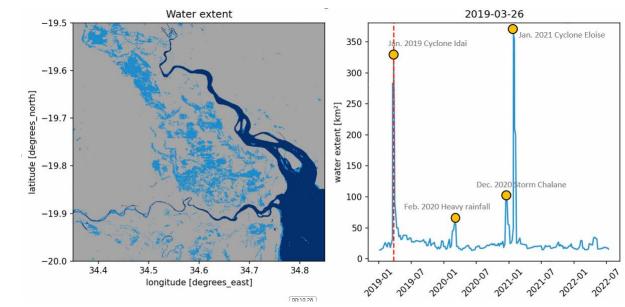
• Fuzzy logic-based approach enabling a post-classification and region-growing, taking advantage of topography-derived indices in addition to SAR backscatter.

Algorithm 1 (LIST)

- Hierarchical split-based approach enabling re-calibration of parameters in NRT based on the most recent pair of S-1 images.
- Uses a highly innovative sequence of hierarchical image splitting, statistical modelling and region-growing to delineate and classify areas that changed their flooding-related backscatter response between two image acquisitions from the same orbits.

Algorithm 1 (TUW)


- A fully automatic, pixel-based flood extent mapping workflow which exploits per-pixel full Sentinel-1 signal history in a data cube (time-series) of backscatter measurements;
- Enables a very fast, scalable production of flood and water extent maps through precomputed global parameters at high quality.


Sentinel-1 & water detection

- Specular (i.e. mirror-like) scattering over calm water bodies
- Water look-alikes
 - Tarmacs
 - Dry soil
 - Wet snow
 - Agricultural fields
- Rough water surfaces disturb specular scattering
- Double-bounce backscattering in urban areas
- Diffuse backscatter over dense vegetation

Product Evolution

- Update exclusion mask
 - No sensitivity, i.e. refinement of parameters
 - Refinement of Non-water low backscatter over arid areas
 - Radar shadow, i.e. integration of CopDEM simulated radar shadow
- Computing the reference water mask for a period of 5 years (instead of 2 years)
- Flag scenes as flooded with anomaly detection
- Reprocessing of the flood archive
- Incorporate Sentinel 1-C
- Adding new GHSL data for flood impacts

