What's new in EFAS 4.0?

Model improvements,
6-hourly calibration,
new evaluation layers & reporting points

Cinzia Mazzetti and Shaun Harrigan
Emergency Management

L I S F L O O D m o d e l i m p r o v e m e n t s f o r E F A S 4 . 0

In LISFLOOD code:
- Sub-daily steps (6-hourly)
- Improved channel routing
- Improved handling of restart from existing state files (warm start)
- Open Source LISFLOOD
- New model documentation and test cases

In EFAS 4.0:
- 6-hourly model steps now used everywhere
- Improved simulations in small-medium catchments
- Some corrections to the model river network
- Improved location of river gauges on the model river network
- More strictly physical ranges for calibration parameters

Open Source LISFLOOD

GitHub https://ec-jrc.github.io/lisflood/
New 6-hourly calibration

- Calibration performed at **6-hourly steps** for the first time
- **1137 stations** in 215 different catchments (up from 717)
- 406 with **6-hourly discharge data (≈35%)** and 731 with daily discharge data
- **≈50% of EFAS domain** area belongs to a calibrated catchment (~4 millions km2 over ~9 millions km2)
- Catchments area of calibration stations varying from 468 km2 (Ishem catchment, AL) to 807'000 km2 (Danube catchment, RO), with a median area of 3000 km2.

6-hourly (blue) and daily (red) calibration points

Calibrated area (red)

EFAS3 (blue) and EFAS4 (black) calibration points

Larger calibrated area

More stations
New 6-hourly calibration

- Observed discharge data for the **period 1990-2017** were considered for the calibration
- **Minimum 4 years** of discharge data are used for calibration.
- **Privileged 6-hourly data** at stations where daily data are also available
- Performed on **14 LISFLOOD parameters** with 6-hourly modelling steps
- Used **modified KGE** as objective function

All details on EFAS Wiki:
https://confluence.ecmwf.int/display/COPSRV/European+Flood+Awareness+System

Calibration stations data availability (years)
Hydrological model performance

- Median $KGE' = 0.75$ across Europe (1991-2017)
- Similar performance for stations with 6-hourly and 24-hourly observations

KGE' is generally uniformly distributed

Higher skills in Central Europe and main European rivers

Lower skill in catchments with strongly regulated rivers

KGE' and correlation > 0.7 at calibration stations
Model performance: EFAS 4 vs EFAS 3

Comparison on 1991-2017 at daily time steps

- **6hrs steps** in EFAS4 vs **24hrs steps** in EFAS3
- **1137** calib stations in EFAS4 vs **718** in EFAS3
- **Shorter calib period** in EFAS4 vs EFAS3

EFAS4 calibration improved!

Difference in KGE' between EFAS4 and EFAS3

- EFAS4 is better
Water Balance layer is now showing 6-hourly LISFLOOD hydrographs
Number of stations up to 1387
New thresholds based on recalibrated model climatology

Compare Qsim and Qobs in WB layer
Post-processing is trained with past observations and simulations.

- It blends the available observations over the last 40 days, LISFLOOD water balance and forecasts.
- It gives the probability distribution of the future observations.
- It’s now available at 1183 stations.
- It can be missing if forecast is beyond the calibration range.

It’s not a bug!
Medium-range forecast skill

- Generation of long-term large-sample reforecasts
 - ECMWF-ENS for reference year 2019
 - 2 per week; 11 ensemble members
 - 20-years (1999-2018), 6-hourly; 46 day lead time

- Persistence benchmark forecast = 6 hr river discharge from previous time step

- Evaluated against proxy observations (EFAS 4.0 forced simulation (sfo)) at n=2651 fixed reporting points

- Continuous Ranked Probability Skill Score:
 \[CRPSS = 1 - \frac{CRPS_{fc}}{CRPS_{bench}} \]
 No Skill=0; Perfect skill=1

Median CRPSS:
- 6 hr = 0.92
- 1 day = 0.69
- 3 day = 0.64
- 5 day = 0.56
New 'Evaluation' tab

- Three layers in new Evaluation tab:
 - 1.) Model performance – Points
 - 2.) Model performance – Catchments
 - 3.) Medium-range forecast skill

- Full method details and results on the wiki:
 - Hydrology model performance: https://confluence.ecmwf.int/display/COPSRV/EFAS+hydrological+model+performance
 - Medium-range forecast skill: https://confluence.ecmwf.int/display/COPSRV/EFAS+medium-range+forecast+skill
Summary: Kling Gupta-Efficiency (KGE) Decomposed into:
- Correlation
- Bias errors
- Variability errors
2. Model performance - catchments

Model Performance - Catchments

Legend
- KGE
- KGE < 0.2 and Cor. ≥ 0.6

Description
Modified Kling-Gupta Efficiency (KGE) for calibration stations. The KGE ranges from –Inf to 1, with a perfect value of 1. KGE refers to historical data and calibration periods. Detailed results are shown when clicking on corresponding stations in the ‘Model Performance - Points’ layer. Also shown are catchments where the KGE falls below 0.2, but correlation is above 0.6. These are catchments with large bias, but still have useful information about flood timing.
3. Medium-range forecast skill

Continuous Ranked Probability Skill Score (CRPSS)

Headline medium-range forecast skill score
Max lead time (in days), up to 10-days ahead, in which the CRPSS > 0.5, when compared to a simple persistence benchmark forecast
Q1 (Nuno Moreira, IPMA, Portugal): I was wondering in regards to the latest map on the CRPSS score, for a higher value of the score closer to 1. There could also be an extra map for the number of days because of the short rain forecast. What do you think about this option of having higher scores for setting the number of days where you have the score higher than thresholds for the short rains?

A1a (Shaun Harrigan, COMP): We had so many different ideas on different ways we could display the score. We wanted to have a few summary layers that describe the basic kind of skill in the model performance. We have decided for a threshold 0.5, which means that a forecast is twice skillful as the benchmark.

A1b (Peter Salamon, JRC): I think we're doing really a bit of pioneering work, because for hydrology it is not a common bizniss to use these types of headline scores. It is also the learning process needed on the user's side and for sure over time we need to finetune and maybe we find some other headlines scores. This is definitely work in the progress.
Q2 (Maik Renner, LfU, Germany): Are model simulations and forecasts directly accessible? For example to be used in our local forecasting system, e.g. for comparison with our own forecasts?

A2 (Christel Prudhomme, COMP): Yes, the hydrological simulations and forecasts are made available after 30 days for the forecasts through the Copernicus Data Store (CDS), but you can request access in real-time to COMP. We are also now publishing all reforecasts through the CDS, so that partners can do their own evaluation (https://cds.climate.copernicus.eu/cdsapp#!/dataset/efas-reforecast?tab=overview).

Q3 (Oliver Nicholson, OPW, Ireland): Is it possible that the improvements that are available in EFAS 4 will lead to a smaller minimum catchment size for EFAS Formal Flood Notifications?

A3a (Cinzia Mazzetti, COMP): Yes, it is possible that new EFAS developments could lead to a smaller minimum catchment size for EFAS Formal Flood Notifications. We'll carry out further investigations before doing that.

A3b: (Shaun Harrigan, COMP): While the catchment size has not yet changed for formal notifications, the new way the fixed reporting points is implemented means you will be able to monitor any station that is available for Ireland (including if EFAS thresholds are triggered).